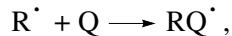


Reactivity of Quinones As Alkyl Radical Acceptors

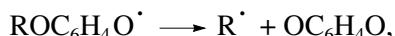
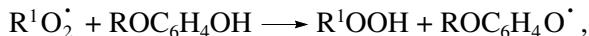
E. T. Denisov

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia

e-mail: det@icp.ac.ru


Received March 4, 2005

Abstract—The enthalpies of the addition of 11 alkyl radicals to *ortho*- and *para*-benzoquinones and substituted *para*-benzoquinones and the enthalpies of formation of various alkoxyphenoxyl radicals have been calculated. Experimental data for the addition of alkyl radicals to quinones are analyzed in terms of the intersection of two parabolic potential curves, and parameters characterizing this class of reactions are calculated. The classical potential barrier of the thermally neutral reaction of alkyl radical addition to benzoquinone is $E_{e,0} = 82.1$ kJ/mol. This class of reactions is compared to other classes of free-radical addition reactions. The interaction between the electrons of the reaction center and the π electrons of the aromatic ring is a significant factor in the activation energy. Activation energies, rate constants, and the geometric parameters of the transition state have been calculated for 40 reactions of alkyl radical addition to quinones. Strong polar interaction has been revealed in the addition of polar macroradicals to quinones, and its contribution to the activation energy has been estimated. Kinetic parameters, activation energies, and rate constants have been calculated for the reverse reactions of alkoxyphenoxyl radical decomposition to quinone and alkyl. The competition between chain termination and propagation reactions in alkoxyphenol-inhibited hydrocarbon oxidation is discussed.

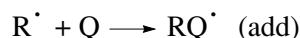


DOI: 10.1134/S0023158406050028

INTRODUCTION

Quinones (Q) are acceptors of alkyl radicals (R^{\cdot}) and well-known inhibitors of radical polymerization [1–3]. The addition of Q to a macroradical yields a low-reactivity alkoxyphenoxyl radical, resulting in chain termination:

At the same time, *ortho*- and *para*-alkoxyphenols are very active antioxidants [4–6]. Their oxidation-inhibiting efficiency depends, in particular, on the decomposition of the phenoxy radicals forming from them, the reaction responsible for chain propagation [4, 6]:

Thus, the reactivity of quinones as acceptors of alkyl radicals and the reactivity of alkoxyphenoxyl radicals in the reverse decomposition reaction are of interest to both radical polymerization and antioxidant chemistry.


In the present work, the parabolic model (intersecting parabolas method, IPM) [7, 8] is used in the analysis and kinetic calculation of the parameters of addition reactions. The geometric parameters of the transition state (TS) in the reactions considered were calculated using the reduced parabolic model (RIPM) [9–11]. The data thus obtained allowed a theoretical analysis to be

carried out for the temperature limit of the efficiency of alkoxyphenols as antioxidants.

COMPUTATIONAL PROCEDURE

Enthalpy of the Addition of Alkyl Radicals to Quinones

In the reaction

the radical R^{\cdot} adds to the oxygen atom of quinone to form the alkoxyphenoxyl radical RQ^{\cdot} . The enthalpy of this reaction, ΔH_{add} , is

$$\Delta H_{\text{add}} = \Delta H_f^0(RQ^{\cdot}) - \Delta H_f^0(R^{\cdot}) - \Delta H_f^0(Q). \quad (1)$$

The enthalpies of formation of the alkyl and phenoxy radicals were calculated using the enthalpies of formation of the corresponding molecules and the dissociation energies of the bonds whose cleavage produces these radicals:

$$\Delta H_f^0(R^{\cdot}) = \Delta H_f^0(RH) + D_{R-H} - \Delta H_f^0(H^{\cdot}), \quad (2)$$

$$\Delta H_f^0(RQ^{\cdot}) = \Delta H_f^0(RQH) + D_{O-H} - \Delta H_f^0(H^{\cdot}). \quad (3)$$

Because the enthalpy of formation of the alkoxyphenols is unknown, for $R = CH_3$ [4], $\Delta H_f^0(RQH)$ was derived from the difference of the enthalpies of forma-

tion of ROME and MeOMe using the modified increment rule [12]:

$$\Delta H_f^0(\text{RQH}) = \Delta H_f^0(\text{MeQH}) + \Delta H_f^0(\text{ROMe}) - \Delta H_f^0(\text{MeOMe}). \quad (4)$$

The enthalpies of formation of RH are known [13], the strengths of C–H bonds are also available [14, 15], $\Delta H_f^0(\text{H}^\cdot) = 218 \text{ kJ/mol}$ [13], and ΔH_f^0 (*para*-benzoquinone) = -122.9 kJ/mol [13]. The enthalpies of formation of substituted quinones and alkoxyphenols were calculated using the increment rule [12], the enthalpy of formation of 4-methoxyphenol is $\Delta H_f^0(4\text{-MeOC}_6\text{H}_4\text{OH}) = -242 \pm 7 \text{ kJ/mol}$ [4], and the O–H bond dissociation energies for phenols were taken from a handbook [4] or were calculated from available data using the additivity rule applied to the effects of substituents on $D_{\text{O-H}}$.

Kinetic Parameters of the Addition Reaction in the Framework of the IPM

In the IPM, bimolecular addition is characterized by the enthalpy ΔH_e , the classical potential barrier E_e , the coefficient α , the product br_e (where $2b^2$ is the force constant of the attacked C=O bond and r_e is the total elongation of the reacting bonds in the TS), and the pre-exponential factor A . Except ΔH_e and E_e , all parameters are constant for a given class of reactions. The enthalpy ΔH_e includes the algebraic sum of zero-point energies of the bonds that form or break in the elementary reaction:

$$\Delta H_e = \Delta H + 0.5hN_A \sum v_i, \quad (5)$$

$$0.5hN_A \sum v_i = 0.5hN_A(2v_{\text{C=O}} - 3v_{\text{C-O}}) = 0.2 \text{ kJ/mol.} \quad (6)$$

As a result of alkyl addition to quinone, two C=O groups disappear ($0.5hN_A v = 10 \text{ kJ/mol}$ [8]) and three C–O bonds are formed ($0.5hN_A v = 6.6 \text{ kJ/mol}$ [7]), so $0.5hN_A \sum v_i = 0.2 \text{ kJ/mol}$.

The classical potential barrier E_e is related to the Arrhenius activation energy $E = RT \ln(A/k)$ through a simple equation ($0.5hN_A v_{\text{C=O}} = 10 \text{ kJ/mol}$):

$$E_e = RT \ln(A/k) + 0.5hN_A v_{\text{C=O}} - 0.5RT. \quad (7)$$

The preexponential factor for R^\cdot addition to the carbonyl group of quinone is taken to be $A = 10^8 \text{ l mol}^{-1} \text{ s}^{-1}$, as in the case of R^\cdot addition to the C=C bond [8]. The coefficient α is expressed as $\alpha = b_{\text{C=O}}/b_{\text{C-O}}$. For the C=O group, the frequency of stretching vibrations is $v = 1765 \text{ cm}^{-1}$ [13] and, therefore, $b = 2\pi v \sqrt{\mu} = 58.38 \times 10^{10} \text{ (kJ/mol)}^{1/2} \text{ m}^{-1}$, where μ is the reduced mass of the C=O bond. For the ordinary bond C–O, $b = 38.14 \times$

$10^{10} \text{ (kJ/mol)}^{1/2} \text{ m}^{-1}$ [7] and, hence, $\alpha = 1.531$. Thus, R^\cdot addition to quinones as a class of reactions is characterized by the following parameters and corrections: $\alpha = 1.531$, $b = 58.38 \times 10^{10} \text{ (kJ/mol)}^{1/2} \text{ m}^{-1}$, $\Delta H_e = \Delta H + 0.2 \text{ kJ/mol}$, and $E_e = E + 10 - 0.5RT$.

The br_e value calculated from experimental data using the equation

$$br_e = \alpha \sqrt{E_e - \Delta H_e} + \sqrt{E_e} \quad (8)$$

is given in Results and Discussion. This value allows one to calculate the activation energy of any reaction of this class from the enthalpy of this reaction:

$$\sqrt{E_e} = B \left\{ \alpha \sqrt{1 + \frac{\Delta H_e}{B b r_e}} - 1 \right\}, \quad (9)$$

where $B = br_e/(\alpha^2 - 1)$.

TS Interatomic Distances in the Addition Reaction

We have recently developed an algorithm for calculating TS interatomic distances for free-radical addition reactions [9, 10]. This algorithm includes calculating the interatomic distances in the reaction center using the RIPM [9] and correlating these distances with the results of DFT calculations [10]. The calculation was performed using the following formulas. The distance $r^\#(\text{C...O})$ between the C and O atoms of the carbonyl group of quinone (these atoms bear a free valence) is calculated by the formula [11]

$$r^\#(\text{C...O}) \times 10^{10}, \text{ m} = r(\text{C-O}) + \frac{\beta D_e^\#}{b_f^\#}, \quad (10)$$

where $r(\text{C-O}) = 1.416 \times 10^{-10} \text{ m}$ is the length of the C–O bond formed in alkoxyphenol [13], $D_e^\# = \Delta H_e + E_e$, $2(b_f^\#)^2$ is the effective force constant of the bond forming in the TS, and the coefficient $\beta = 0.826$ is obtained by comparing RIPM and DFT data. The coefficient $b_f^\#$ was calculated by the correlation equation [9]

$$b_f^\# (\text{kJ}^{1/2} \text{ mol}^{-1/2} \text{ m}^{-1}) = 2.28 \times 10^9 D_e^\# - 3.32 \times 10^6 (D_e^\#)^2. \quad (11)$$

According to DFT data, the elongation of the carbonyl bond in the TS of these reactions is insignificant and is given by the formula [11]

$$r^\#(\text{C=O}) \times 10^{-10}, \text{ m} = r(\text{C=O}) + \frac{\sqrt{E_e}}{b_\mu}. \quad (12)$$

The length of the C=O bond is $1.210 \times 10^{-10} \text{ m}$ [13].

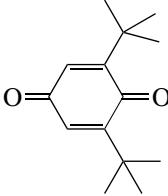
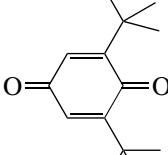
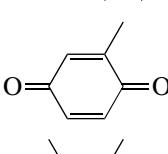
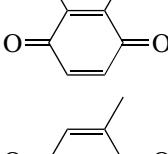
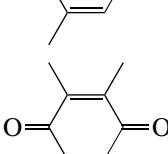
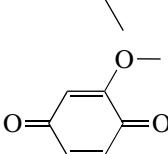
Table 1. Enthalpies of the formation of alkoxyphenoxy radicals and of the addition of alkyl radicals to *para*- and *ortho*-benzoquinones (kJ/mol)

R^\cdot	$\Delta H_f^0(R^\cdot)$	$\Delta H_f^0(\text{ROMe}) - \Delta H_f^0(\text{MeOMe})$	$\Delta H_f^0(\text{RQ}^\cdot)$	$-\Delta H_{\text{add}}$
<i>para</i> -OC ₆ H ₄ O ($\Delta H_f^0 = -122.9$ kJ/mol)				
C [·] H ₃	147.6	0.0	-114.9	139.6
MeC [·] H ₂	120.2	-32.2	-147.1	144.4
Me ₂ C [·] H	89.3	-67.8	-182.7	149.1
Me ₃ C [·]	47.8	-99.6	-214.5	139.4
cyclo-C ₆ [·] H ₁₁	67.4	-87.5	-202.4	146.9
PhC [·] H ₂	207.4	102.1	-12.8	97.3
MePhC [·] H	176.0	74.1	-40.8	93.9
Me ₂ PhC [·]	140.7	46.1	-68.8	86.6
CH ₂ =CHC [·] H ₂	170.0	79.5	-35.4	82.5
Ph [·]	338.6	116.3	1.4	214.3
CH ₂ =C [·] H	298.5	77.0	-37.9	213.5
Me(MeOC(O))C [·] H	250.1	-395.7	-510.6	137.6
Me(MeOC(O))C [·] Me	285.8	-431.0	-545.9	137.2
Me(MeC(O)O)C [·] H	262.4	-433.4	-548.3	163.0
<i>ortho</i> -OC ₆ H ₄ O ($\Delta H_f^0 = -104.6$ kJ/mol)				
C [·] H ₃	147.6	0.0	-109.0	152.0
MeC [·] H ₂	120.2	-32.2	-141.2	156.8
Me ₂ C [·] H	89.3	-67.8	-176.8	161.5
Me ₃ C [·]	47.8	-99.6	-208.6	151.8
cyclo-C ₆ [·] H ₁₁	67.4	-87.5	-196.5	159.3
PhC [·] H ₂	207.4	102.1	-6.9	109.7
MePhC [·] H	176.0	74.1	-34.9	106.3
Me ₂ PhC [·]	140.7	46.1	-62.9	99.0
CH ₂ =CHC [·] H ₂	170.0	79.5	-29.5	94.9
Ph [·]	338.6	116.3	7.3	226.7
CH ₂ =C [·] H	298.5	77.0	-32.0	225.9

RESULTS AND DISCUSSION

Enthalpy of R[·] Addition to Quinones

The calculated enthalpies of formation of *para*- and *ortho*-alkoxyphenoxy radicals and the enthalpies of







the addition of R[·] radicals to quinones are listed in Tables 1 and 2.

The enthalpy of R[·] addition to *para*-benzoquinone varies in a wide range of -82 to -214 kJ/mol, and the

Table 2. Enthalpies of the formation of alkoxyphenoxy radicals and of the addition of alkyl radicals to benzoquinones (kJ/mol)

R^\bullet	Q	$\Delta H_f^0(\text{Q})$	$\Delta H_f^0(\text{RQH})$	$D(\text{RQ-H})$	$\Delta H_f^0(\text{RQ}^\bullet)$	ΔH_{add}
$\text{C}^\bullet\text{H}_3$		-155.2	-272.0	343.4	-146.6	-139.0
$\text{C}^\bullet\text{H}_3$		-221.5	-330.6	343.4	-205.2	-131.3
$\text{C}^\bullet\text{H}_3$		-286.7	-389.2	341.6	-265.6	-126.5
$\text{C}^\bullet\text{H}_3$		-198.5	-308.4	331.4	-195.0	-144.1
$\text{C}^\bullet\text{H}_3$		-188.3	-304.7	332.3	-190.4	-149.7
$\text{C}^\bullet\text{H}_3$		-188.3	-308.0	341.1	-184.9	-144.2
$\text{C}^\bullet\text{H}_3$		-320.1	-422.6	327.1	-313.5	-141.0
$\text{C}^\bullet\text{H}_3$		-450.5	-546.2	334.5	-429.7	-126.8
$\text{C}^\bullet\text{H}_3$		-226.1	-333.1	331.2	-219.9	-141.4
$\text{C}^\bullet\text{H}_3$		-260.5	-380.4	342.4	-256.0	-143.1
Bu^\bullet		-122.9	-317.0	347.8	-187.2	-145.3

Table 2. (Contd.)

R^\bullet	Q	$\Delta H_f^0(Q)$	$\Delta H_f^0(RQH)$	$D(RQ-H)$	$\Delta H_f^0(RQ^\bullet)$	ΔH_{add}
$\text{Me}_3\text{C}^\bullet$		-320.1	-534.2	331.3	-420.9	-148.6
$\text{C}_6\text{H}_5^\bullet$		-320.1	-317.8	337.2	-198.6	-217.1
$\text{PhC}^\bullet\text{HR}$		-155.2	-197.9	343.4	-72.5	-93.3
$\text{PhC}^\bullet\text{HR}$		-188.3	-229.7	331.4	-116.3	-104.0
$\text{PhC}^\bullet\text{HR}$		-188.3	-233.9	341.1	-110.8	-98.5
$\text{PhC}^\bullet\text{HR}$		-221.4	-254.3	331.2	-141.1	-95.7
$\text{PhC}^\bullet\text{HR}$		-286.7	-357.3	341.4	-233.7	-80.8

same enthalpy for *ortho*-benzoquinone ranges between -99 and -227 kJ/mol. In the first approximation, the more reactive the R^\bullet radical (the stronger the R-H bond), the lower the enthalpy of the reaction.

Radical	Ph^\bullet	Et^\bullet	$\text{PhC}^\bullet\text{H}_2$
$D_{\text{C}-\text{H}}$, kJ/mol	474	422	375
ΔH , kJ/mol	-214	-144	-97

The enthalpy of R^\bullet addition is higher for *para*-benzoquinone than for *ortho*-benzoquinone. Methyl substituents in benzoquinone exert a weak effect on the enthalpy of addition of methyl radicals (Table 2), and methoxy substituents substantially raise the enthalpy (Table 2).

Comparison with Other Classes of Addition Reactions

The initial experimental data and the br_e values calculated by formulas (7) and (8) are presented in Table 3.

The reactions appearing in Table 3 are characterized by similar br_e values; therefore, they belong to one class. The average br_e value is 22.94 ± 0.59 (kJ/mol) $^{1/2}$, implying the following classical potential barrier for the thermally neutral reaction [8]:

$$E_{e,0} = \left\{ \frac{br_e}{1 + \alpha} \right\}^2 = 82.1 \pm 4.3 \text{ kJ/mol.} \quad (13)$$

Let us compare the parameters of this reaction to the parameters of other classes of addition reactions.

Reaction	ΔH , kJ/mol	E , kJ/mol	$E_{e,0}$, kJ/mol
$\text{C}\cdot\text{H}_3 + \text{para-OC}_6\text{H}_4\text{O}$	-139.9	6.6	82.1
$\text{C}\cdot\text{H}_3 + \text{Me}_2\text{CO} \longrightarrow \text{Me}_3\text{CO}\cdot$	-26.0	33.0	58.5
$\text{C}\cdot\text{H}_3 + \text{Me}_2\text{CO} \longrightarrow \text{Me}_2\text{C}\cdot\text{OMe}$	-9.5	35.9	52.4
$\text{C}\cdot\text{H}_3 + \text{CH}_2=\text{CHMe}$	-100.0	19.3	76.3
$\text{C}\cdot\text{H}_3 + \text{CH}_2=\text{CHCH=CH}_2$	-146.9	12.0	86.0
$\text{C}\cdot\text{H}_3 + \text{CH}_2=\text{CHPh}$	-144.7	7.7	79.4

Clearly, the addition of a methyl radical to *para*-benzoquinone is most similar in ΔH , E , and $E_{e,0}$ to $\text{C}\cdot\text{H}_3$ addition to styrene and butadiene-1,3. This is likely due to the fact that the reaction center of the TS in these reactions is adjacent to π electrons of the double bond or aromatic ring. The interaction of the π electrons of the ring with the electrons of the reaction center raises the activation energy (the effect of the repulsion of electron pairs in the TS [10]). At the same time, the reactions $\text{Me}\cdot + \text{quinone}$ and $\text{Me}\cdot + \text{Me}_2\text{CO} \longrightarrow \text{Me}_2\text{C}\cdot\text{OMe}$, with identical structures of the reaction

center, differ strongly in terms of $E_{e,0}$ from radical addition to quinones.

Theoretical Calculation of E and k for $R\cdot$ Addition to *para*- and *ortho*-Benzoquinones

The activation energies were calculated by formula (9), and the rate constants of the addition of 11 radicals with various structures to *ortho*- and *para*-benzoquinones were determined using the Arrhenius formula. The results of these calculations are presented in Table 4. The activation energy of addition varies between 14 and 29 kJ/mol, and the rate constants range from 1.2×10^8

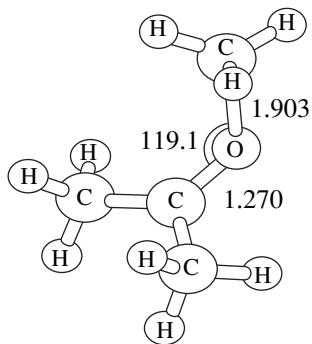
Table 3. Addition of radicals to quinones: initial kinetic data and calculated br_e values

$R\cdot$	Q	ΔH_{add} , kJ/mol	$k(T)$, $1 \text{ mol}^{-1} \text{ s}^{-1}$	E_{add} , kJ/mol	br_e , $(\text{kJ/mol})^{1/2}$	References
$\text{C}\cdot\text{H}_3$		-139.6	4.5×10^7 (298)	3.7	22.40	[16]
$\text{CH}_2=\text{CH}(\text{CH}_2)_3\text{C}\cdot\text{H}_2$		-144.4	2.0×10^7 (342)	6.5	23.21	[17]
$\text{PhC}\cdot\text{HCH}_2\sim$		-93.9	1.01×10^5 (323)	20.4	22.36	[1]
$\text{PhC}\cdot\text{HCH}_2\sim$		-93.3	5.29×10^4 (323) 1.38×10^5 (353)	20.3 19.3	22.30 22.11	[1]
$\text{PhC}\cdot\text{HCH}_2\sim$		-104.0	2.39×10^4 (323)	24.3	23.65	[1]
$\text{PhC}\cdot\text{HCH}_2\sim$		-98.5	1.85×10^4 (333) 4.01×10^4 (363)	25.8 25.7	23.50 23.47	[1]
$\text{PhC}\cdot\text{HCH}_2\sim$		-95.7	4.98×10^3 (323)	26.6	23.45	[1]
				Average	22.94 ± 0.59	

Table 4. Theoretical activation energies, rate constants, and geometric parameters of the TS for the addition of radicals to *ortho*- and *para*-benzoquinones

R^{\cdot}	ΔH_{add} , kJ/mol	E_{add} , kJ/mol	$k(350 \text{ K})$, $1 \text{ mol}^{-1} \text{ s}^{-1}$	$r^{\#}(\text{C}\dots\text{O}) \times 10^{10}$, m	$r^{\#}(\text{C}=\text{O}) \times 10^{10}$, m
<i>para</i> -Benzoquinone					
$\text{C}\cdot\text{H}_3$	-139.6	6.6	2.07×10^7	1.792	1.241
$\text{MeC}\cdot\text{H}_2$	-144.4	5.1	3.47×10^7	1.790	1.240
$\text{Me}_2\text{C}\cdot\text{H}$	-149.1	3.7	5.61×10^7	1.789	1.238
$\text{Me}_3\text{C}\cdot$	-139.4	6.7	2.00×10^7	1.792	1.241
<i>cyclo-C₆H₁₁</i>	-146.9	4.3	4.56×10^7	1.790	1.239
$\text{PhC}\cdot\text{H}_2$	-97.3	22.7	8.19×10^4	1.809	1.255
$\text{MePhC}\cdot\text{H}$	-93.9	24.2	4.89×10^4	1.811	1.256
$\text{Me}_2\text{PhC}\cdot$	-86.6	27.4	1.63×10^4	1.814	1.258
$\text{CH}_2=\text{CHC}\cdot\text{H}_2$	-82.5	29.3	8.48×10^3	1.816	1.259
$\text{Ph}\cdot$	-214.3	1.4	1.24×10^8	1.775	1.235
$\text{CH}_2=\text{C}\cdot\text{H}$	-213.5	1.4	1.24×10^8	1.775	1.235
<i>ortho</i> -Benzoquinone					
$\text{C}\cdot\text{H}_3$	-152.0	2.8	7.64×10^7	1.788	1.237
$\text{MeC}\cdot\text{H}_2$	-156.8	1.5	1.19×10^8	1.786	1.235
$\text{Me}_2\text{C}\cdot\text{H}$	-161.5	1.4	1.24×10^8	1.785	1.235
$\text{Me}_3\text{C}\cdot$	-151.8	2.3	9.07×10^7	1.788	1.237
<i>cyclo-C₆H₁₁</i>	-159.3	1.4	1.24×10^8	1.785	1.236
$\text{PhC}\cdot\text{H}_2$	-109.7	17.5	4.89×10^5	1.804	1.251
$\text{MePhC}\cdot\text{H}$	-106.3	18.9	3.02×10^5	1.805	1.252
$\text{Me}_2\text{PhC}\cdot$	-99.0	22.0	1.04×10^5	1.808	1.254
$\text{CH}_2=\text{CHC}\cdot\text{H}_2$	-94.9	23.7	5.81×10^4	1.810	1.256
$\text{Ph}\cdot$	-226.7	1.4	1.24×10^8	1.775	1.235
$\text{CH}_2=\text{C}\cdot\text{H}$	-225.9	1.4	1.24×10^8	1.775	1.235

to $1.6 \times 10^4 \text{ mol}^{-1} \text{ s}^{-1}$ (350 K). The activation energies thus calculated fall rather close to experimental E values.


Radical	$\text{C}\cdot\text{H}_3$	$\text{MeC}\cdot\text{H}_2$	$\text{RPhC}\cdot\text{H}$
$E(\text{exp.})$, kJ/mol	3.7	6.5	20.4
$E(\text{calcd.})$, kJ/mol	6.6	5.1	24.2
ΔE , kJ/mol	2.9	1.4	3.8

TS Geometry in R^{\cdot} Addition to $>\text{C}=\text{O}$

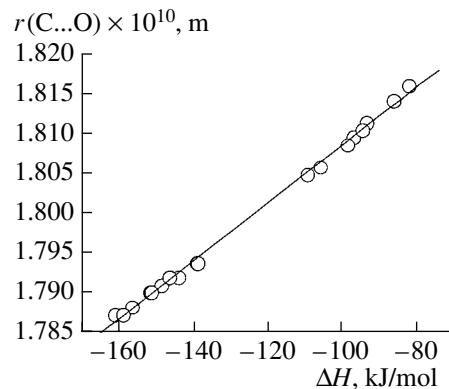
The geometry of the TS in methyl addition to the O atom of acetone was calculated earlier by the DFT

method [11]. In this reaction, the TS configuration is nonlinear (Fig. 1).

The algorithm developed for the calculation of interatomic distances in the TS of addition reactions [9, 10] makes it possible to calculate the distances $r^{\#}(\text{C}\dots\text{O})$ and $r^{\#}(\text{C}=\text{O})$ for the reactions examined here. The $r^{\#}(\text{C}\dots\text{O})$ and $r^{\#}(\text{C}=\text{O})$ data calculated using formulas (10)–(12) are listed in Table 4. The addition of R^{\cdot} to quinone is a very exothermic reaction and, hence, its TS is early. The $\text{C}=\text{O}$ bond elongates insignificantly, specifically, by $(1\text{--}2) \times 10^{-11} \text{ m}$, and, by contrast, the $\text{C}\dots\text{O}$ distance between the approaching C^{\cdot} atom and the O atom of the carbonyl group is much longer than the $\text{C}=\text{O}$ bond ($1.416 \times 10^{-10} \text{ m}$). The distance $r^{\#}(\text{C}\dots\text{O})$

Fig. 1. Geometry of the transition state of the reaction of methyl radical addition to the oxygen atom of acetone (calculated by the DFT method [10]).

and the enthalpy of the reaction are linearly correlated (Fig. 2) in the following analytical form:


$$r^\#(\text{C...O}) \times 10^{10} = 1.85 + (3.93 \pm 0.05)\Delta H. \quad (14)$$

Polar Effect in Addition Reactions

When a radical having a polar group adds to quinone, the polar reaction center $\text{C}=\text{O}\dots\text{C}$ and the polar group X of the $\text{RXC}\cdot\text{H}$ radical interact in the TS. This interaction makes a contribution (ΔE_μ) to the activation energy [7, 8]. This contribution can be positive or negative. It can be estimated from experimental data, specifically, the Arrhenius activation energy (E_μ) that characterizes the addition of $\text{RXC}\cdot\text{H}$ to quinone. For this purpose, the parameter $(br_e)_\mu$, which characterizes the classical potential barrier of the reaction examined, is calculated and is then compared to the parameter br_e of the reaction of nonpolar $\text{R}\cdot$ with quinone Q. The contribution from the polar interaction to the activation energy is estimated by the formula [7]

$$\Delta E_\mu = \{(br_e)_\mu^2 - (br_e)^2\}(1 + \alpha)^{-2}. \quad (15)$$

Table 5 contains the initial experimental data (reaction rate constants) and the ΔE_μ increments calculated by formula (15) for the addition of *para*-benzoquinone to macroradicals that are capable of carrying on free-rad-

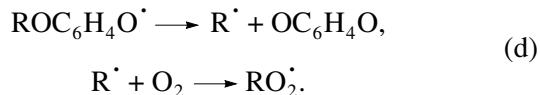


Fig. 2. Correlation between the interatomic distance C...O in the TS and the enthalpy of alkyl radical addition to benzoquinones.

ical polymerization and contain polar groups. It can be seen that, for the three reactions considered, the polar interaction greatly increases the activation energy: its contribution is 29.8 kJ/mol for the methyl acrylate macroradical, 27.8 kJ/mol for methyl methacrylate, and 52.1 kJ/mol for vinyl acetate.

Decomposition of Alkoxyphenoxyl Radicals

Alkoxyphenols have a weak O-H bond and are widely used as antioxidants [4]. Their inhibiting effect on hydrocarbon oxidation is complicated by the decomposition, at elevated temperatures, of the phenoxyl radicals that they produce. The decomposition of an alkoxyphenoxyl radical yields an alkyl radical that continues the chain oxidation of the substrate:

Since the decomposition of the alkoxyphenoxyl radical (reaction (d)) is the reverse of R^\cdot addition to quinone (reaction (add)), these reactions have the same TS, $\Delta H_d = -\Delta H_{\text{add}}$, and $E_d = E_{\text{add}} + \Delta H_d$. The values of ΔH_{add} , E_{add} (see Table 4), E_d , and k_d for the decomposition of 11 *para*- and 11 *ortho*-alkoxyphenoxyl radicals are presented in Table 6. When calculating k_d , we used the pre-exponential factor $A_d = 10^{14} \text{ s}^{-1}$. This value is typical of

Table 5. Contribution from the polar effect (ΔE_μ) to the activation energy in the addition of polar macroradicals to *para*-benzoquinones

Monomer	ΔH_{add} , kJ/mol	T, K	k_{add} , $1 \text{ mol}^{-1} \text{ s}^{-1}$	E_{add} , kJ/mol	$br_e, (\text{kJ/mol})^{1/2}$	ΔE_μ , kJ/mol
$\text{CH}_2=\text{CHCOOMe}$	137.6	317	1.2×10^3	31.7	26.78	29.8
$\text{CH}_2=\text{CMeCOOMe}$	137.2	317	2.4×10^3	29.9		
$\text{CH}_2=\text{CMeCOOMe}$	137.2	323	2.92×10^3	29.9	26.54	27.8
$\text{CH}_2=\text{CMeCOOMe}$	137.2	333	2.96×10^3	30.8		
$\text{CH}_2=\text{CHOC(O)Me}$	163.0	317	5.0×10	40.8	29.33	52.1

Table 6. Theoretical activation energies and the rate constants of decomposition of the *ortho*- and *para*-alkoxyphenoxyl radicals

R	ΔH_d , kJ/mol	E_{add} , kJ/mol	E_d , kJ/mol	$k_d(400 \text{ K})$, s ⁻¹
<i>para</i> -Benzooquinone				
CH ₃	139.6	6.6	146.2	8.10×10^{-6}
MeCH ₂	144.4	5.1	149.5	3.00×10^{-6}
Me ₂ CH	149.1	3.7	152.8	1.11×10^{-6}
Me ₃ C	139.4	6.7	146.1	8.35×10^{-6}
cyclo-C ₆ H ₁₁	146.9	4.3	151.2	1.80×10^{-6}
PhCH ₂	97.3	22.7	120.0	2.14×10^{-2}
MePhCH	93.9	24.2	118.1	3.78×10^{-2}
Me ₂ PhC	86.6	27.4	114.0	1.30×10^{-1}
CH ₂ =CHCH ₂	82.5	29.3	111.8	2.51×10^{-1}
Ph	214.3	1.4	215.7	6.80×10^{-15}
CH ₂ =CH	213.5	1.4	214.9	8.66×10^{-15}
<i>ortho</i> -Benzooquinone				
CH ₃	152.0	2.8	154.8	6.10×10^{-7}
MeCH ₂	156.8	1.5	158.3	2.13×10^{-7}
Me ₂ CH	161.5	1.4	162.9	5.34×10^{-8}
Me ₃ C	151.8	2.3	154.1	7.53×10^{-7}
cyclo-C ₆ H ₁₁	159.3	1.4	160.7	1.58×10^{-7}
PhCH ₂	109.7	17.5	127.2	2.45×10^{-3}
MePhCH	106.3	18.9	125.2	4.47×10^{-3}
Me ₂ PhC	99.0	22.0	121.0	1.58×10^{-2}
CH ₂ =CHCH ₂	94.9	23.7	118.6	3.26×10^{-2}
Ph	226.7	1.4	228.1	1.63×10^{-16}
CH ₂ =CH	225.9	1.4	227.3	2.08×10^{-16}

the homolytic cleavage of molecules [14]. It can be seen that E_d varies in a wide range of 112 to 216 kJ/mol.

The calculated E_d data make it possible to estimate the temperature at which alkoxyphenol loses its antioxidant efficiency. In a substrate being oxidized, alkoxyphenol RQH and its phenoxyl radical react as follows (the reactions are numbered as in [4]):

The critical point can be assumed to be the point at which the rate of RQ[·] radical decomposition is equal to the halved initiation rate w_i :

$$k_7[RQH][R^1O_2^{\cdot}] = k_d[RQ^{\cdot}] = 0.5w_i. \quad (16)$$

From the condition that the concentrations of the radicals involved in the chain propagation reaction (d) and

in the chain termination reactions (VII) and (VIII) are quasi-stationary, we derive the following relationship between the concentrations of the peroxy and phenoxyl radicals:

$$2k_8[RQ^{\cdot}][R^1O_2^{\cdot}] = w_i. \quad (17)$$

From this relationship and the differential equation for the rate of accumulation of peroxy radicals in the hydrocarbon being oxidized, we obtain the following expression for their stationary concentration:

$$[R^1O_2^{\cdot}] = \frac{k_8w_i}{4k_7[RQH]} \left\{ 1 + \sqrt{1 + \frac{8k_7k_d[RQH]}{k_8w_i}} \right\}. \quad (18)$$

Substituting this expression into Eqs. (16) and (17), we obtain the following expression for the critical (boundary) $k_{d,\text{max}}$ value at which inhibition by alkoxyphenol becomes inefficient:

$$k_{d,\text{max}}k_7 = k_8w_i/[RQH]. \quad (19)$$

Taking the logarithm of this equation and introducing the Arrhenius expressions for the rate constants k_7 and k_d , we arrive at

$$(RT\ln 10)\log\left(\frac{A_d A_7 [RQH]}{k_8 w_i}\right) = E_d + E_7. \quad (20)$$

This expression enables one to estimate the maximum oxidation temperature (T_{\max}) above which alkoxyphenol is inefficient. Below, we present T_{\max} values calculated for a variety of R radicals in alkoxyphenols RQH. This calculation was carried out for $k_8 \approx 10^9 \text{ l mol}^{-1} \text{ s}^{-1}$

($\log A_d = 14.0$ and $\log A_7 = 7.5$ [4]). In this case, Eq. (20) takes the form

$$T_{\max} = \frac{52.25(E_d + E_7)}{12.5 + \log\{[RQH]/w_i\}}. \quad (21)$$

The T_{\max} values (K) calculated for a series of alkoxyphenols are presented below. The activation energy E_7 for the reactions of secondary peroxy radicals with alkoxyphenols in a hydrocarbon medium is $E_7 = 14.0 \text{ kJ/mol}$ [4].

[RQH]/ w_i	Me	Me ₂ CH	PhCH ₂	Me ₂ PhC	CH ₂ =C ₆ CH ₂	Ph
10 ³ s	539	562	451	431	424	773
10 ⁴ s	507	528	424	405	398	727
10 ⁵ s	478	497	400	382	375	685

It can be seen that T_{\max} varies in a wide range (from 375 to 773 K), depending on the structure of R and on the $[RQH]/w_i$ ratio, which is proportional to the induction period. The temperature limit for the efficient action of quinones as polymerization inhibitors can be determined in a similar way. At a sufficiently high temperature, a macroradical with a terminal RQ[·] group becomes thermally unstable and will sooner decompose than react with another macroradical to terminate the chain.

ACKNOWLEDGMENTS

This work was supported by the Division of Chemistry and Materials Science, Russian Academy of Sciences, through program no. 1, "Theoretical and Experimental Investigation of the Nature of the Chemical Bond and of the Mechanisms of the Most Important Chemical Reactions."

REFERENCES

1. Eastmond, G.C., in *Comprehensive Chemical Kinetics*, Bamford, C.H. and Tipper, C.F.H., Eds., Amsterdam: Elsevier, 1976, vol. 14A, p. 153.
2. Denisov, E.T. and Azatyan, V.V., *Inhibition of Chain Reactions*, London: Gordon and Breach, 2000.
3. Moad, G. and Solomon, D.H., *The Chemistry of Free Radical Polymerization*, New York: Pergamon, 1995.
4. Denisov, E.T. and Denisova, T.G., *Handbook of Antioxidants*, Boca Raton: CRC, 2000.
5. Denisov, E.T. and Afanasiev, I.B., *Oxidation and Antioxidants in Organic Chemistry and Biology*, Boca Raton: Taylor and Francis, 2005.
6. Roginskii, V.A., *Fenol'nye antioksidanty: reaktsionnaya aktivnost' i effektivnost'* (Phenolic Antioxidants: Reactivity and Efficiency), Moscow: Nauka, 1988.
7. Denisov, E.T., in *General Aspects of the Chemistry of Radicals*, Alfassi, Z.B., Ed., New York: Wiley, 1998.
8. Denisov, E.T., *Usp. Khim.*, 2000, vol. 69, no. 2, p. 166.
9. Denisov, E.T., *Izv. Akad. Nauk, Ser. Khim.*, 2004, no. 8, p. 1542.
10. Drozdova, T.I., Denisov, E.T., Shestakov, A.F., and Emel'yanova, N.S., *Kinet. Katal.*, 2006, vol. 47, no. 1, p. 111 [*Kinet. Catal.* (Engl. Transl.), vol. 47, no. 1, p. 106].
11. Shestakov, A.F., Denisov, E.T., and Emel'yanova, N.S., *Izv. Akad. Nauk, Ser. Khim.*, 2005, no. 4, p. 886.
12. Benson, S.W., *Thermochemical Kinetics*, New York: Wiley, 1976.
13. Lide, D., *Handbook of Chemistry and Physics*, Boca Raton: CRC, 2004, 2005.
14. Denisov, E.T., Denisova, T.G., and Pokidova, T.S., *Handbook of Free Radical Initiators*, New York: Wiley, 2003.
15. Tsang, W., in *Energetics of Free Radicals*, Greenberg, A. and Lieberman, J., Eds., New York: Blackie Academic and Professional, 1996, p. 22.
16. Valtwisch, D. and Asmus, K.-D., *J. Chem. Soc., Perkin Trans.*, 1982, p. 1147.
17. Citterio, A., Arnoldi, A., and Minici, F., *J. Org. Chem.*, 1979, vol. 44, no. 15, p. 2674.